Axial uniformity diagnosis of coaxial surface wave linear plasma by optical emission spectroscopy

Author:

ZHANG WenjinORCID,WEI Xinyu,CHEN Longwei,LIN Qifu,JIANG Yiman,LIU Chengzhou,SHAN Jiafang

Abstract

Abstract The coaxial surface wave linear plasma with preeminent axial uniformity is developed with the 2.45 GHz microwave generator. By optical emission spectroscopy, parameters of the argon linear plasma with a length over 600 mm are diagnosed under gas pressure of 30 and 50 Pa and different microwave powers. The spectral lines of argon and H β (486.1 nm) atoms in excited state are observed for estimating electron excitation temperature and electron density. Spectrum bands in 305–310 nm of diatomic OH ( A 2 Σ + X 2 Π i ) radicals are used to determine the molecule rotational temperature. Finally, the axial uniformity of electron density and electron excitation temperature are analyzed emphatically under various conditions. The results prove the distinct optimization of compensation from dual powers input, which can narrow the uniform coefficient of electron density and electron excitation temperature by around 40% and 22% respectively. With the microwave power increasing, the axial uniformity of both electron density and electron excitation temperature performs better. Nevertheless, the fluctuation of electron density along the axial direction appeared with higher gas pressure. The axial uniformity of coaxial surface wave linear plasma could be controlled by pressure and power for a better utilization in material processing.

Funder

National Natural Science Foundation of China

Institute of Energy of Hefei Comprehensive National Science Center

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3