Abstract
Abstract
The helicon plasma source, which generates high thrust and high impulse, is of vital importance for magnetoplasma rocket engines. In this work, a multi-component, two-dimensional, axisymmetric fluid model coupled with an electromagnetic field was developed to model the helicon discharge. The simulation results demonstrate that: (i) the discharge mode changes twice—each conversion is accompanied by a plasma density jump and an electron temperature peak in the discharge; (ii) when the input current increases, the plasma density increases, and ionization occurs faster; (iii) the background magnetic field clearly enhances the discharge; (iv) the plasma density may be smaller if the discharge has not entered the wave mode.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献