Development of a combined interferometer using millimeter wave solid state source and a far infrared laser on ENN’s XuanLong-50 (EXL-50)

Author:

XIE Jiaxing,WEI Xuechao,LIU Haiqing,LI Songjian,ZHANG Jibo,YAO Yuan,WANG Yunfei,JIE Yinxian

Abstract

Abstract A millimeter wave solid state source—far infrared laser combined interferometer system (MFCI) consisting of a three-channel 890 GHz hydrogen cyanide (HCN) laser interferometer and a three-channel 340 GHz solid state source interferometer (SSI) is developed for real-time line-integrated electron density feedback and electron density profile of the EXL-50 spherical tokamak device. The interferometer system is a Mach–Zehnder type, with all probe-channels measured vertically, covering the plasma magnetic axis to the outermost closed magnetic plane. The HCN laser interferometer uses an HCN laser with a frequency of 890 GHz as a light source and modulates a 100 kHz beat signal by a rotating grating, giving a temporal resolution of 10 μs. The SSI uses two independent 340 GHz solid-state diode sources as the light source, the frequency of the two sources is adjustable, and the temporal resolution of SSI can reach 1 μs by setting the frequency difference of the two lasers at 1 MHz. The main optical path of the two interferometers is compactly installed on a set of double-layer optical platform directly below EXL-50. Dual optical path design using corner cube reflectors avoids the large support structures. Collinear the probe-beams of two wavelengths, then the phase error caused by vibration can be compensated. At present, the phase noise of the HCN Interferometer is 0.08 rad, corresponding to a line-integrated electron density of 0.88 × 1017 m−2, one channel of measuring result was obtained by the MFCI system, and the highest density measured is about 0.7 × 1019 m−2.

Funder

Key Program of Research and Development of Hefei Science Center

National MCF Energy R&D Program

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3