Investigation of an electrode-driven hydrogen plasma method for in situ cleaning of tin-based contamination

Author:

PENG 彭 Yichao 怡超,YE 叶 Zongbiao 宗标,WANG 王 Sishu 思蜀,PU 蒲 Guo 国,LIU 刘 Xianyang 显洋,YUAN 苑 Congcong 聪聪,LIAO 廖 Jiashu 加术,WEI 韦 Jianjun 建军,YU 余 Xingang 新刚,GOU 芶 Fujun 富均

Abstract

Abstract To prolong the service life of optics, the feasibility of in situ cleaning of the multilayer mirror (MLM) of tin and its oxidized contamination was investigated using hydrogen plasma at different power levels. Granular tin-based contamination consisting of micro- and macroparticles was deposited on silicon via physical vapor deposition (PVD). The electrode-driven hydrogen plasma at different power levels was systematically diagnosed using a Langmuir probe and a retarding field ion energy analyzer (RFEA). Moreover, the magnitude of the self-biasing voltage was measured at different power levels, and the peak ion energy was corrected for the difference between the RFEA measurements and the self-biasing voltage ( ). XPS analysis of O 1s and Sn 3d peaks demonstrated the chemical reduction process after 1 W cleaning. Analysis of surface and cross-section morphology revealed that holes emerged on the upper part of the macroparticles while its bottom remained smooth. Hills and folds appeared on the upper part of the microparticles, confirming the top-down cleaning mode with hydrogen plasma. This study provides an in situ electrode-driven hydrogen plasma etching process for tin-based contamination and will provide meaningful guidance for understanding the chemical mechanism of reduction and etching.

Funder

Institutional Research Fund from Sichuan University

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3