Electron population properties with different energies in a helicon plasma source

Author:

ZHANG ZunORCID,ZHANG Zhe,TANG Haibin,OUYANG Jiting

Abstract

Abstract The characteristics of electrons play a dominant role in determining the ionization and acceleration processes of plasmas. Compared with electrostatic diagnostics, the optical method is independent of the radio frequency (RF) noise, magnetic field, and electric field. In this paper, an optical emission spectroscope was used to determine the plasma emission spectra, electron excitation energy population distributions (EEEPDs), growth rates of low-energy and high-energy electrons, and their intensity jumps with input powers. The 56 emission lines with the highest signal-to-noise ratio and their corresponding electron excitation energy were used for the translation of the spectrum into EEEPD. One discrete EEEPD has two clear different regions, namely the low-energy electron excitation region (neutral lines with threshold energy of 13–15 eV) and the high-energy electron excitation region (ionic lines with threshold energy ≥19 eV). The EEEPD variations with different diameters of discharge tubes (20 mm, 40 mm, and 60 mm) and different input RF powers (200–1800 W) were investigated. By normalized intensity comparison of the ionic and neutral lines, the growth rate of the ionic population was higher than the neutral one, especially when the tube diameter was less than 40 mm and the input power was higher than 1000 W. Moreover, we found that the intensities of low-energy electrons and high-energy electrons jump at different input powers from inductively coupled (H) mode to helicon (W) mode; therefore, the determination of W mode needs to be carefully considered.

Funder

National Natural Science Foundation of China

Shanghai Engineering Research Center of Space Engine

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3