Valley-dependent topological edge states in plasma photonic crystals

Author:

LI Jianfei,ZHOU Chen,YAO Jingfeng,YUAN Chengxun,WANG Ying,ZHOU Zhongxiang,ZHANG Jingwen,KUDRYAVTSEV Anatoly A

Abstract

Abstract Plasma photonic crystals designed in this paper are composed of gas discharge tubes to control the flow of electromagnetic waves. The band structures calculated by the finite element method are consistent with the experimental results which have two distinct attenuation peaks in the ranges of 1‒2.5 GHz and 5‒6 GHz. Electromagnetic parameters of the plasma are extracted by the Nicolson–Ross–Weir method and effective medium theory. The measured electron density is between 1 × 10 11 cm 3 and 1 × 10 12 cm 3 , which verifies the correctness of the parameter used in the simulation, and the collision frequency is near 1.5 × 10 10 Hz . As the band structures are corroborated by the measured scattering parameters, we introduce the concept of photonic topological insulator based on the quantum Valley Hall effect into the plasma photonic crystal. A valley-dependent plasma photonic crystal with hexagonal lattice is constructed, and the phase transition of the valley K ( K ) occurs by breaking the spatial inversion symmetry. Valley-spin locked topological edge states are generated and excited by chiral sources. The frequency of the non-bulk state can be dynamically regulated by the electron density. This concept paves the way for novel, tunable topological edge states. More interestingly, the Dirac cone is broken when the electron density increases to 3.1 × 10 12 cm 3 , which distinguishes from the methods of applying a magnetic field and changing the symmetry of the point group.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3