Author:
LIU Zhaoyuan,CHEN Qiang,LIU Qinghuo,OSTRIKOV Kostya (Ken)
Abstract
Abstract
Dual argon plasmas ignited by one direct current power source are used to treat an aqueous solution of hydrogen tetrachloroaurate-(III) trihydrate (HAuCl4 · 3H2O) which is contained in an H-type electrochemical cell. The solution contained in one cell acts as a cathode, and in the other as an anode. Experiments are carried out to directly visualize the formation process of gold nanoparticles (AuNPs) in separated cells of the H-type electrochemical reactor. The results and analyzes suggest that hydrogen peroxide and hydrated electrons generated from the plasma-liquid interactions play the roles of reductants in the solutions, respectively. Hydrogen peroxide can be generated in the case of the liquid being a cathode or an anode, while most of hydrated electrons are formed in the case of the liquid being an anode. Therefore, the reduction of the AuCl4
− ions is mostly attributed to the hydrogen peroxide as the liquid acts as a cathode, while to the hydrogen peroxide and hydrated electrons as the liquid acts as an anode. Moreover, the pH value of the solution can be used to tune the formation processes and the final form of the AuNPs due to its mediation of reductants.
Funder
National Natural Science Foundation of China
Australian Research Council
QUT Center for Materials Science
Basic Research Program of Science and Technology of Shenzhen
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献