Image-based plasma morphology determination and LIBS spectra correction in combustion environments

Author:

CHAI Shu,PENG Haimeng,ZHAO Ziqing,WU Wendong

Abstract

Abstract Spectra correction is essential for the quantification of laser-induced breakdown spectroscopy (LIBS) due to the uncertainties in plasma morphology. In this work, we determined the plasma morphology using a charge-coupled device camera and introduced the spectral correction method based on plasma images to a combustion environment. The plasma length, width, volume, and location were extracted from the plasma images. Using a back-scattering setup, the contribution of plasma location fluctuation to the total spectral fluctuation was mitigated. The integral intensity of the plasma image was used as a proxy of the total number density to correct the spectra. Linear relationships were established between the integral intensities of the plasma images and the spectral intensities, under different laser energy levels and gas temperatures. The image-based correction method could significantly reduce the fluctuation of raw spectral intensities when the laser energy was below 240 mJ. Compared with the correction method based on total spectral areas, the proposed method offered significant improvements in the low energy region, which promises to reduce the signal fluctuations in combustion environments while preserving the spatial resolution and mitigating the flow disturbance.

Funder

Natural Science Foundation of Shanghai

Oceanic Interdisciplinary Program of Shanghai Jiao Tong University

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3