Realization of homogeneous dielectric barrier discharge in atmospheric pressure argon and the effect of beads on its characteristics

Author:

RAN JunxiaORCID,ZHANG XuexueORCID,ZHANG Yu,WU Kaiyue,ZHAO Na,HE Xingran,DAI Xiuhong,LIANG Qihang,LI XuechenORCID

Abstract

Abstract This paper describes the realization of a homogeneous dielectric barrier discharge (DBD) in argon at atmospheric pressure. The effect of the morphology of the dielectric surface (especially the dielectric surface covered by hollow ceramic beads (99% Al2O3) with different diameters) on discharge is investigated. With different dielectrics, the argon DBD presents two discharge modes: a filamentary mode and a homogeneous mode. Fast photography shows that the filamentary mode operates in a streamer discharge, and the homogeneous mode operates in a Townsend discharge regime. It is found that a homogeneous discharge can be generated within a certain voltage range. The voltage amplitude range decreases, and the breakdown voltage increases with the increase in the mean diameter of the ceramic beads. Waveforms of the total current and optical emission signal present stochastic pulses per half voltage cycle for the filamentary mode, whereas there is one single hump per half voltage cycle for the homogeneous mode. In the homogeneous mode, the intensity of the optical emission decreases with the mean diameter of the ceramic beads. The optical emission spectrum is mainly composed of atomic lines of argon and the second positive system of molecular nitrogen. It reveals that the electron density decreases with the increasing mean diameter of the ceramic beads. The vibrational temperature increases with the increasing mean diameter of the ceramic beads. It is believed that a large number of microdischarges are formed, and smaller ceramic beads have a larger activation surface area and more point discharge. Electrons liberated in the shallow well and electrons generated from microdischarges can increase the secondary electron emission coefficient of the cathode and provide initial electrons for discharge continuously. Therefore, the breakdown electric field is reduced, which contributes to easier generation of homogeneous discharge. This is confirmed by the simulation results.

Funder

National Natural Science Foundation of China

Hebei Province Natural Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3