Comparison of emission signals for different polarizations in femtosecond laser-induced breakdown spectroscopy

Author:

WANG Qiuyun,CHEN Anmin,LIU Miao,LIU Yitong,LI Qingxue,LI Suyu,JIANG Yuanfei,GAO Xun,JIN Mingxing

Abstract

Abstract In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance (LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu (I) lines, indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laser-induced plasma.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3