Energy forecasting to benchmark for federal net-zero objectives under climate uncertainty

Author:

Weiss Scott C,Delorit Justin D,Chini Christopher MORCID

Abstract

Abstract Climate variability creates energy demand uncertainty and complicates long-term asset management and budget planning. Without understanding future energy demand trends related to intensification of climate, changes to energy consumption could result in budget escalation. Energy demand trends can inform campus infrastructure repair and modernization plans, effective energy use reduction policies, or renewable energy resource implementation decisions, all of which are targeted at mitigating energy cost escalation and variability. To make these long-term management decisions, energy managers require unbiased and accurate energy use forecasts. This research uses a statistical, model-based forecast framework, calibrated retrospectively with open-source climate data, and run in a forecast mode with CMIP5 projections of temperature for RCPs 4.5 and 8.5 to predict total daily energy consumption and costs for a campus-sized community (population: 30 000) through the end of the century. The case study of Wright Patterson Air Force Base is contextualized within the existing executive orders directing net-zero emissions and carbon-free electricity benchmarks for the federal government. The model suggests that median annual campus electric consumption, based on temperature rise alone, could increase by 4.8% with RCP4.5 and 19.3% with RCP8.5 by the end of the century, with a current carbon footprint of 547 million kg CO2e. Monthly forecasts indicate that summer month energy consumption could significantly increase within the first decade (2020–2030), and nearly all months will experience significant increases by the end of the century. Therefore, careful planning is needed to meet net-zero emissions targets with significant increases in electricity demands under current conditions. Policies and projects to reduce the carbon footprint of federal agencies need to incorporate forecasting models to understand changes in demand to appropriately size electric infrastructure.

Funder

Air Force Civil Engineer Center

Publisher

IOP Publishing

Subject

General Engineering,Energy Engineering and Power Technology

Reference45 articles.

1. Neuro-fuzzy mid-term forecasting of electricity consumption using meteorological data;Adedeji,2019

2. City scale energy demand forecasting using machine learning based models: a comparative study;Al-bayaty,2019

3. Regional energy demand responses to climate change: methodology and application to the commonwealth of Massachusetts;Amato;Clim. Change,2005

4. Relationships between meteorological variables and monthly electricity demand;Apadula;Appl. Energy,2012

5. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes?;Cannon;J. Clim.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding resource consumption and sustainability in the built environment;Environmental Research: Infrastructure and Sustainability;2023-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3