Abstract
Abstract
Climatic design conditions are widely used by the building community as environmental parameters informing the size and energy requirements for heating, ventilation and air conditioning systems, along with other building design characteristics. Climatic design conditions are calculated by the American Society of Heating, Refrigerating and Air-conditioning Engineers using historical climate data. Our work advances methods for projecting future climate design conditions based on data from global climate models. These models do not typically archive the hourly data required for climate design condition calculations, and they often exhibit large biases in extreme conditions, daily minimum temperatures and daily maximum temperatures needed for climatic design conditions. We present a method for rescaling historical hourly data under future climatic states to estimate the impact of climate change on future building climatic design conditions. This rescaling method is then used to calculate future climatic design conditions in Madison, Wisconsin, throughout the 21st century for two future greenhouse gas emissions scenarios. The results are consistent with a warming climate and show increases in heating, cooling, humidification and dehumidification design conditions, suggesting less extreme cold conditions and more extreme hot and humid conditions in Madison. The design conditions used for estimating energy demand, degree days, show that under a business-as-usual scenario, by the mid-century, building heating and cooling in Madison (climate zone 5A) will be similar to the current heating demand in Chicago, IL (climate zone 5A) and cooling demand in Baltimore, MD (climate zone 4A); by the late-century, building heating and cooling in Madison will resemble the current heating demand in St Louis, MO (climate zone 4A) and cooling demand in Augusta, GA (climate zone 3A). Given the rapid pace of climate change in the 21st century, our work suggests that historical design conditions may become obsolete during even the initial stages of a building’s expected life span. Changes in climatic design conditions in Madison highlight the importance of considering future climatic changes in building design to ensure that buildings built today meet the performance needs of the future.
Funder
The Office of Sustainability at the UW-Madison
Subject
General Engineering,Energy Engineering and Power Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献