Energy–water nexus of formal and informal water systems in Beirut, Lebanon

Author:

Choueiri YasminaORCID,Lund Jay,London Jonathan,Spang Edward SORCID

Abstract

Abstract Many areas in the world with chronic and intermittent water shortages rely on informal water systems for much of their daily water needs with water from tanker trucks, purchased bottled water, rainwater cisterns, or pumped well water. These alternative sources all require varying amounts of energy. Water–energy nexus studies have not yet considered environmental impacts of informal water sources, specifically from an energy intensity and carbon emissions perspective. This study compares energy use and carbon emissions per cubic meter and per capita for both formal and informal water sources for a neighborhood in Beirut Lebanon. Energy use and carbon emissions are calculated for three delivery stages per source including pumping, treatment and distribution. The results show that informal sources have the highest energy use and carbon emissions. From the total water delivered to households, they account for 83% of energy use and 72% of carbon emissions per capita, even though they only provide 23% of total delivered volume per capita. Bottled water and distribution of water by tanker trucks have the highest energy intensity values per cubic meter of all water sources. Moreover, internal building water pumping, which is not typically accounted for, takes up to 14% of total energy use and 23% of total carbon emissions per capita compared to other water sources. To address model uncertainty, we conduct a sensitivity analysis, showing that the base model presented reasonably stable results and identifying the most sensitive parameters for further research. While informal sources help communities overcome water shortages they result with negative impacts. Strategies are proposed to improve the environmental performance of the Lebanese electrical grid, reduce water losses, replace inefficient truck engines and incentivize household to invest in low carbon technologies.

Publisher

IOP Publishing

Subject

General Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3