Climate change hazards, physical infrastructure systems, and public health pathways

Author:

Ikonomova MariaORCID,MacAskill KristenORCID

Abstract

Abstract Climate-related hazards such as heatwaves, flooding, wildfires, and storms will increase morbidity and mortality unless infrastructure decision-makers—including urban planners, infrastructure asset managers, and utility providers—implement preventive measures to protect public health from these hazards. Existing research and policies have not systematically identified the key risk factors that these decision-makers need to manage to protect public health in a changing climate. This gap leads to unclarity regarding what infrastructure interventions are required to prevent climate-related health risks and what actors have a responsibility to manage these risks. The Climate-Health-Infrastructure-Pathways Model is introduced in this paper to address this gap and provide a conceptual map that captures the role of physical infrastructure systems in the pathways between climate-related hazards and health risks. The model surpasses what can be found in existing climate change research and policy, including the latest IPCC reporting, and is a conceptual qualitative tool that offers a typology of climate and health risks for infrastructure management. Decision-makers can use the model as a starting point to review the coverage of their current climate risk management plans and identify further opportunities to develop preventive infrastructure responses to protect public health in a changing climate.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

General Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydroclimatic extremes in arid and semi-arid regions: status, challenges, and future outlook;Hydroclimatic Extremes in the Middle East and North Africa;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3