Abstract
Abstract
Improving phosphorus (P) management is important for both ecosystem protection and avoiding mineable P scarcity. In order to inform the development of impactful solutions to both of these issues, we assessed the potential of several specific management strategies to reduce demand for new mined P in fertilizers and supplements for livestock, thereby reducing net P inputs to land. The strategies assessed were variable rate fertilizer (VRF) application, improvements to P digestibility for livestock, efficient utilization of manure and wastewater treatment (WWT) P, and elimination of avoidable domestic food waste. The potential of these strategies to reduce net anthropogenic P inputs was assessed at the county level for the coterminous US using the commodity-specific net anthropogenic P and nitrogen inputs (CSNAPNI) model. The largest contributions toward eliminating NAPI in the US can come from efficient manure utilization either at national (30%–50% NAPI reduction) or county-level (21%–30% NAPI reduction). However, widespread adoption of VRF (10%–41% NAPI reduction), and all other strategies considered (5% or greater NAPI reductions each) could make significant contributions. In combinations of strategies that included VRF or P digestibility improvements, negative feedbacks occurred. VRF reduced demand for fertilizer, thereby reducing the potential for efficient manure and WWT P utilization at the county-level. P digestibility improvements in poultry and swine diets reduced the expected production of recoverable manure P by 36%, decreasing the total manure P that could be used to replace mined P fertilizer. However, P digestibility improvements also reduced county-level excess manure P by 25%. Prior studies have focused on quantifying P inputs or the potential of in-situ best management practices to reduce losses to water, but strategies to reduce P inputs are understudied.
Funder
United States Department of Agriculture
Subject
General Engineering,Energy Engineering and Power Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献