A framework for determining energy use in rural food delivery services: capturing system interdependencies through an agent-based discrete-event approach

Author:

Gee Isabella MORCID,Faust Kasey MORCID,Webber Michael E

Abstract

Abstract Food e-commerce has seen significant growth over the past decade that accelerated after the onset of the COVID-19 pandemic. Last-mile transportation and logistics are widely considered the most expensive and least efficient portion of the supply chain and have multiple important energy trade-offs such as cargo capacity and consumer density. Last-mile transportation energy use in rural areas is underrepresented in the literature. This study proposes a hybrid agent-based and discrete event model framework for evaluating the last-mile transportation energy use of van- and car-based food delivery services in a rural community, based on meal-kit and grocery delivery operations, respectively. This framework quantifies last-mile energy use in rural areas, and is demonstrated here using a neighborhood outside of Austin, TX as an analytical testbed. The study focuses on the effects of consumer density, cargo limitations, and vehicle speed. For the conditions examined with this framework, diesel delivery vans use more total energy than passenger cars for the same trip, though a van delivering four orders uses less energy per-order than a car delivering one order. However, there are trade-offs between vehicle type and mileage, cargo capacity, route density, and speed that are particularly important for delivery services operating in rural areas. This framework can be used by service providers to assess route-specific trade-offs for each vehicle and gauge which is preferable for given operating conditions or to evaluate the energy, and thus also cost, impact of expanding their services to rural areas.

Funder

Cynthia and George Mitchell Foundation

Publisher

IOP Publishing

Reference119 articles.

1. Demand for freight transportation in the U.S.: a high-level view;Albert,2013

2. Understanding the impact of e-commerce on last-mile light goods vehicle activity in urban areas: the case of London;Allen;Transport. Res. D,2018

3. Distributed hybrid agent-based discrete event emergency medical services simulation;Anagnostou,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3