Strategies for connecting whole-building LCA to the low-carbon design process

Author:

McCord Kieren HORCID,Dillon Heather EORCID,Gunderson Patricia,Carlson Sadie,Phillips Adam RORCID,Griechen Darrin,Antonopoulos Chrissi AORCID

Abstract

Abstract Decarbonization is essential to meeting urgent climate goals. With the building sector in the United States accounting for 35% of total U.S. carbon emissions, reducing environmental impacts within the built environment is critical. Whole-building life cycle analysis (WBLCA) quantifies the impacts of a building throughout its life cycle. Despite being a powerful tool, WBLCA is not standard practice in the integrated design process. When WBLCA is used, it is typically either speculative and based on early design information or conducted only after design completion as an accounting measure, with virtually no opportunity to impact the actual design. This work proposes a workflow for fully incorporating WBLCA into the building design process in an iterative, recursive manner, where design decisions impact the WBLCA, which in turn informs future design decisions. We use the example of a negative-operational carbon modular building seeking negative upfront embodied carbon using bio-based materials for carbon sequestration as a case study for demonstrating the utility of the framework. Key contributions of this work include a framework of computational processes for conducting iterative WBLCA, using a combination of an existing building WBLCA tool (Tally) within the building information modeling superstructure (Revit) and a custom script (in R) for materials, life cycle stages, and workflows not available in the WBLCA tool. Additionally, we provide strategies for harmonizing the environmental impacts of novel materials or processes from various life cycle inventory sources with materials or processes in existing building WBLCA tool repositories. These strategies are useful for those involved in building design with an interest in reducing their environmental impact. For example, this framework would be useful for researchers who are conducting WBLCAs on projects that include new or unusual materials and for design teams who want to integrate WBLCA more fully into their design process in order to ensure the building materials are consciously chosen to advance climate goals, while still ensuring best performance by traditional measures.

Funder

Advanced Research Projects Agency - Energy

Publisher

IOP Publishing

Subject

General Engineering,Energy Engineering and Power Technology

Reference56 articles.

1. 2019 global status report for buildings and construction;IEA (International Energy Agency),2019

2. DOE Announces $46 Million to Boost Energy Efficiency and Slash Emissions in Residential and Commercial Buildings;U.S. Department of Energy,2023

3. Review of life-cycle based methods for absolute environmental sustainability assessment and their applications;Bjørn;Environ. Res. Lett.,2020

4. Net zero adaptation—a review of built environment sustainability assessment tools*;Shuttleworth;Environ. Res. Infrastruct. Sustain.,2021

5. Integrative design process—GSA sustainable facilities tool;Anon

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3