Humidification–dehumidification desalination process using green hydrogen and heat recovery

Author:

Brunini AORCID,García M C,Melgarejo A AORCID,Rodríguez R G

Abstract

Abstract We propose the use of green hydrogen as fuel for a seawater heater in a humidification/dehumidification (HDH) desalination plant to increase its productivity, to allow scaling to large dimensions without negative environmental effects, and to guarantee continuous operation. We develop a mathematical model of the proposed HDH configuration. For operating conditions that guarantee very low NO x production, the fuel consumption is 0.03 k g of H2 per kg of pure water produced. If the exhaust gases from the seawater heater are used for heat recovery, the GOR of the equipment may increase by up to 39% in relation to the same equipment operating without heat recovery. The operation cost of freshwater is comparable to the costs obtained by other equipment in the literature. If the water produced in the combustion of hydrogen is condensed during the heat recovery process and then added to the freshwater produced, the production cost is reduced by 20%. We found that an excess of air in the air + fuel mix beyond the minimum value appropriate for a low NO x generation does not provide significant benefits. The efficiency of the seawater heater has an impact on the production of pure water, but this impact is strongly mitigated by the heat recovery process. Fuel consumption increases proportionally with the decrease in the effectiveness of the heat recovery device, which is a key parameter for optimal performance. A hydrogen heater is also a good alternative as an auxiliary power source to guarantee continuous operation. In sunny hours a H2 heater may be used to increase productivity preheating the seawater, and at night the system could operate 100% based on H2.

Funder

Universidad Nacional de la Patagonia Austral

Publisher

IOP Publishing

Reference56 articles.

1. State-of-the-art of renewable energy sources used in water desalination: present and future prospects;Bundschuh;Desalination,2021

2. Solar thermal desalination technologies;Qiblawey;Desalination,2008

3. Solar thermal desalination using the multiple effect humidification (MEH)-method;Müller-Holst,2007

4. Water desalination using a humidification–dehumidification technique-a detailed review;Kabeel;Nat. Resour.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3