Climate-smart infrastructure in the United States—what does it look like and how do we get it built?

Author:

Lashof DanielORCID,Neuberger Jillian

Abstract

Abstract The United States has committed to reduce its greenhouse gas emissions to 50%–52% below 2005 levels by 2030 and to net-zero emissions by 2050. This is in line with the Paris Agreement goal of limiting global warming to no more than 1.5 °C. Multiple studies show that achieving these targets is technologically feasible and would have net direct costs of less than 1% of GDP (and possibly negative), not accounting for climate benefits or other externalities. Robust federal, state, and local policies would be needed to ensure that infrastructure to enable decarbonization is built at the required pace and scale. Simultaneous investments in adaptation and resilience infrastructure, including upgrading green and grey infrastructure, will be needed to adapt to the consequences of climate change that can no longer be avoided and increase economic and social resilience to more frequent or severe extreme weather events. These kinds of climate smart infrastructure—infrastructure required to support rapid decarbonization and withstand unavoidable climate change impacts—are expansive and varied. Infrastructure investments to enable decarbonization include renewable and other zero- or near-zero-emissions electricity generation; short- and long-duration energy storage; robust and flexible electricity transmission and distribution; charging and refueling infrastructure for zero-emission vehicles; and clean hydrogen and carbon dioxide capture, transportation and storage. Infrastructure investments in adaptation include supporting infrastructure for extreme heat, drought, and wildfire resilience; coastal and inland flood resilience; and public health resilience. Physically deploying this infrastructure depends on a significant investment focused on addressing the causes and impacts of climate change, as well as an intentional effort to adopt processes and practices at all levels of government to facilitate such large-scale infrastructure deployment and reconstruction. Shifting from a status quo to a transformational approach to infrastructure investment and deployment will be essential to addressing the climate crisis. It will also provide an opportunity to rethink how to design and implement infrastructure in a way that increases equity and delivers for the communities it serves.

Funder

World Resources Institute

Publisher

IOP Publishing

Subject

General Engineering,Energy Engineering and Power Technology

Reference102 articles.

1. Impact of anthropogenic climate change on wildfire across western US forests;Abatzoglou;Proc. Natl Acad. Sci.,2016

2. Opposition to renewable energy facilities in the United States: March 2022 edition;Aidun,2022

3. Centering equity in charging investments to accelerate electrification;Allen,2022

4. Thinking globally and siting locally—renewable energy and biodiversity in a rapidly warming world;Allison;Clim. Change,2014

5. Building cleaner faster final report,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3