Observer based Anti-windup technique for Twin Rotor MIMO System

Author:

Srinivasan C R,Chandrasekar S,Sasnika R,Srividya R

Abstract

Abstract Necessary control techniques must be used in control systems for their proper and smooth operation even in the case of uncertainties and disturbances like sensor-actuator failure. The TRMS workshop serves as a simplified model of a helicopter retaining most of the important dynamic characteristics and cross coupling. This project aims to solve the problem of synthesizing anti-windup control technique based on observer to avoid controller signal entering into saturation in TRMS. The effects of saturation is that systems experience Integrator wind-up. Once the input saturates, the integral of the error keeps increasing. Any further change in the input does not lead to any change of the output of the saturated component. The system behaves like an open-loop configuration, and no control is available. The project applies a Sliding mode control algorithm to the TRMS and uses an observer as an anti-windup technique so that the system doesn’t cease to work even in the case of sensor failure. Using this scheme, the entire system of TRMS along with sensor failure was tested by giving step inputs and the outputs, pitch and yaw were obtained. The results obtained indicated that even in the presence of uncertainties, the system was able to track the given step input without going unstable.

Publisher

IOP Publishing

Subject

General Engineering

Reference11 articles.

1. Control Law Design for Twin Rotor MIMO System with Nonlinear Control Strategy;Ilyas;Hindawi Publishing Corporation, Discrete Dynamics in Nature and Society

2. Observer-based anti-windup compensator design for saturated control systems using an LMI approach;Yang;Computers and Mathematics with Applications,2012

3. Incorporating Robustness into Antiwindup Design;Turner;IEEE Transactions on Automatic Control

4. PID-Based Sliding Mode Controller for Nonlinear Processes;Li;Ind. Eng. Chem. Res.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3