Cloning and expression of the bacteriophage-derived endolysin against Aeromonas hydrophila

Author:

Loc Nguyen Tan,Huyen Bui Thanh,Hoang Hoang Anh,Nga Le Phi

Abstract

Abstract Hemorrhagic septicemia disease in striped catfish is caused by Aeromonas hydrophila bacterium. Antibiotics are commonly used to treat this disease, however, due to antibiotic resistance in A. hydrophila, it is necessary to have an alternative antibacterial agent to antibiotics. Endolysins are bacteriophage-encoded peptidoglycan hydrolases that are synthesized at the end of the lytic phage replication cycle, they lyse the host bacterial cell wall and release new bacteriophage virions. In this study, an endolysin (cell wall hydrolase) derived from A. hydrophila phage PVN02 was artificially synthesized, cloned into pET28a(+) and successfully expressed in E. coli BL21 (DE3). The recombinant endolysin, cell wall hydrolase strongly exhibited antimicrobial activity against A. hydrophila with a reduction of 3-log CFU/ml of A. hydrophila after 30 minutes of mixing and further 30 minutes of incubation, the bacterial cells were lysed completely. It should be emphasized that the lytic activity by the recombinant endolysin to A. hydrophila bacteria did not require a pretreatment with an outer-membrane permeabilizer. The results of our study showed a potential of use this recombinant endolysin as a novel antibacterial agent to replace antibiotics in the treatment of hemorrhagic septicemia diseases in striped catfish.

Publisher

IOP Publishing

Subject

General Engineering

Reference22 articles.

1. The current status antimicrobial resistance in Edwardsiella ictaluri and Aeromonas hydrophila cause disease on the striped catfish farmed in the Mekong Delta;Thi,2014

2. Selection of Phages to Control Aeromonas hydrophila - An Infectious Agent in Striped Catfish;Hoang;Biocontrol science,2019

3. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis;Golkar;J Infect Dev Ctries,2014

4. Bacteriophage endolysins as novel antimicrobials;Schmelcher;Future Microbiol,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3