Author:
Huynh Huu-Tai,Le Minh-Vien,Van Hoang Luan
Abstract
Abstract
In recent years, TiO2 photocatalyst has been studied to increase the overall efficiency in the degradation of organic pollutants in water. Several solutions have been proposed such as non-metal doping to reduce a high band gap energy (3.2 eV) of TiO2 to increase absorption in the visible region and synthesis of composite photocatalyst to improve the efficiency of electron-hole separation and the specific surface area. Herein, the N-doped TiO2-SiO2 photocatalysts were investigated. Powder samples with three molar ratios of TiO2/SiO2 (95/5-TS5, 85/15-TS15, 75/25-TS25) were successfully synthesized, characterized, and estimated their photocatalytic activity toward the phenol degradation (initial concentration to be 10 ppm) under simulated natural light. N-doped TiO2-SiO2 samples were prepared with molar ratios of N to designed TiO2 to be 3%, 5%, 7%. The 3N-TS5 photocatalyst (3 mol % N doped TS5) shows the highest phenol efficiency degradation, to be 95% in 4 h, photocatalytic degradation rate constant of 1.02}10−2 min−1 due to its narrower band gap energy (3.05 eV). Furthermore, the addition of S2O8
2- anions at a concentration of 1 mM is enhanced degradation efficiency and degradation rate. And phenol is almost completely degraded within 60 min and achieved a degradation rate constant of 7.65*10−2 min−1, 7.5 times higher than that without the presence of S2O8
2- anions. This attractive result is attributed to the generation of sulfate radical (SO4
*“) during photolysis. Finally, N-doped TiO2-SiO2 photocatalyst assisted by S2O8
2- anions shows potential to design and improve manufacturing processes to obtain photoreactors for organic degradation from waste-water under natural light degradation.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献