Erosion-deposition Prone Assessment Along the Kelantan and Terengganu Coasts Due to Sea Level Rise

Author:

Benson Y A,Hasan M M,Jamal M H,Lee L H,Anthony D,Mohamad K A,Hamzah S B,Othman I K

Abstract

Abstract The erosion-prone zone is characterised by nearshore sand formed by the combined action of tides, wind, and recurring waves crashing on the beach. By running perpendicular to the coastline and bathymetry, 51 cross-shore sections were chosen from a total of 54 to study longshore transport along the beaches of Kelantan and Terengganu. The hydrodynamic model was used to determine water level, current speed, and spectral density, while the Spectral Wave Model and LitDrift were used to construct boundary wave variables and Net Transport across each sector. The model output was compared to previously published erosion-prone zones in the NCES Report (2015), and the results were agreed. The net transfer varies based on the angle of the coastline, the direction of the waves, and the beach profile. The net transport ranges from -693,000 m3/year to 444,000 m3/year depending on the beach profile, wave direction, and angle of the coastline. Net transit for each section was also calculated for 2030, 2050, and 2100, taking into consideration sea level rise. The most recent IPCC assessment (AR6) was applied to generate SLR forecasts for year 2030, 2050, and 2100. According to the statistics, all sections are expected to increase in year 2030, whereas only 53% and 67% are expected to develop in year 2050 and 2100, respectively. From 2030 to 2050 and 2100 to 2020, total net transport along the Kelantan and Terengganu beaches grows by 9.5%, 10%, and 4.5%, respectively.Net transportation is expected to grow until 2050, then steadily decline until 2100. However, by using a better anticipated wave model, the results of this inquiry can be improved.

Publisher

IOP Publishing

Subject

General Engineering

Reference25 articles.

1. Comprehensive Coastal Vulnerability Assessment and Adaptation for Cherating-Pekan Coast;Fazly;2019 Pahang, Malaysia’, Ocean Coast. Manag.

2. Open sandy beach morphology and morphodynamic as response to seasonal monsoon in Kuala Terengganu, Malaysia;Ariffin;Journal of Coastal Research,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3