Perspectives in advance technologies/strategies for combating rising CO2 levels in the atmosphere via CO2 utilisation: A review

Author:

Joshi N,Sivachandiran L,Assadi A. A.

Abstract

Abstract This review provides exhaustive literature on carbon dioxide (CO2) capture, storage and utilization. CO2 is one of the greenhouse gas, emitted into the atmosphere and has reached an alarming level of well above 400 ppm. The consequences of rising CO2 levels and global warming are visual in day today life such as floods, wildfires, droughts and irregular precipitation cycles. Several reviews, focused on a particular topic, have been published since the 19th century and recently. However, in this review, we have attempted to cover all the CO2 mitigation techniques available for their advantages and disadvantages have been discussed. The blooming technology of carbon capture and storage (CCS) and the pros and cons of CO2 capture, transportation and storage techniques are showcased. Interestingly the transportation of captured CO2 to the potential storage sites requires more than 50% of the total energy budget, therefore, this review is dedicated to the onsite CO2 conversion into value-added chemicals. Various technological advancements for CO2 conversion into other products by the solar thermochemical, electrochemical and photochemical processes have been analysed. From the extensive literature, it’s demonstrated that NTP (Non-Thermal Plasma) is one of the emerging techniques for the direct conversion of CO2 into value-added products as it is energetically efficient. The mechanisms of CO2 activation by thermal and NTP-catalysis have been discussed. Moreover, the benefits of DBD to obtain oxygenates like methanol, aldehydes, acids, and hydrocarbons from direct one-pot synthesis are discussed. The production of such value-added chemicals from CO2 is of prime importance as it will be our step towards a carbon-neutral economy which is the need of the hour. This review has also attempted to compare the cost-effectiveness of current existing techniques for CO2 capture and utilized solar to fuel efficiency to compare distinct technologies available for the utilization of CO2 to value-added chemicals.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3