Animal Biotechnology Roles in Livestock Production

Author:

Funahashi Hiroaki

Abstract

Abstract Currently, meat and milk productions are significantly increasing especially in Asia. The supply of these products is vital to people’s health and well-being, whereas the efficiency of beef production appears to be still lower than other meat productions. Improvements in the quality and functionality of their livestock products, as well as their production efficiency, are required for further production. Animal biotechnologies have contributed to genetic improvement, genetic diversity maintenance of domestic animals, etc. Basic animal biotechnologies, such as artificial insemination and embryo transfer, have been well established and applied as powerful tools for genetic improvement of livestock. In the applications of artificial insemination techniques, the use of sexed semen has been now widely spread, and also efforts are also made in the development of the technology using a small amount of sperm. For embryo transfer, several types of vitrification technologies have been applied to improve pregnancy rates and contributed to the international/domestic supply of livestock embryos. Conventional animal biotechnologies, such as in vitro fertilization and intracellular sperm injection, have been applied to not only livestock production and also human-assisted reproductive medicine. For in-vitro production of embryos in domestic animals, currently, oocytes have been collected from medium or large follicles (3-6 mm or larger in diameter) of ovaries. Although the oocytes derived from small follicles (less than 3 mm in diameter) exist more on the surface of ovaries, the developmental competence of the oocytes has been known to be significantly lower than those from medium follicles. If we could improve the competence of oocytes derived from small follicles significantly, we may be able to increase the number of female gamete resources for in vitro embryo production. Also, the development of techniques for producing transgenic and cloned animals has greatly contributed to the creation of pharmaceuticals and organs for xenotransplantation. Recently, furthermore, genome editing technologies, such as combined use of CRISPR/Cas9 and PiggyBac, have been developed and have made it possible to correct specific parts of the genome and introduce mutations by homologous recombination. In this review, I would like to discuss the application and progress of the above biotechnologies, including our recent research results.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3