Dominant Tree Species Classification using Remote Sensing Data and Object -Based Image Analysis

Author:

Jamal Juhaida,Zaki Nurul Ain Mohd,Talib Noorfatekah,Saad Nurhafiza Md,Mokhtar Ernieza Suhana,Omar Hamdan,Latif Zulkiflee Abd,Suratman Mohd Nazip

Abstract

Abstract Over the last few decades, forests have been the victims of over logging and deforestation. Uncontrolled of this activity gave an impact to the tree species to be endangered. A detailed inventory of tree species is needed to manage and plan the forest on a sustainable basis. Many techniques had been done to identify the tree species, but in the recent three decades, remote sensing technique was widely used to study the distribution of tree species. In this study, an object-based image analysis (OBIA) with a combination of high-resolution multispectral satellite imagery (WV-2) and airborne laser scanning (LiDAR) data was tested for classification of individual tree crowns of tropical tree species at Forest Research Institute Malaysia (FRIM) forest, Selangor. LiDAR data was taken using fixed-wing aircraft with Gemini Airborne Laser Terrain Mapper (ALTM) laser with 0.15m and 0.25 resolution for horizontal and vertical. WV-2 was captured with a 0.5m spatial resolution. In this study, hyperspectral data captured using Bayspec sensor mount at UAV with height 220m from the ground and have 0.3 resolution was used to extract the spectral reflectance of tree species. Segmentation of the image was performed using multi-resolution segmentation in eCognition software. Accuracy assessment for segmentation was done by measure the ‘goodness fit’ (D value) between training object and output segmentation. The overall accuracy of the segmentation was 86%. For species classification, the accuracy assessment was performed using the error matrix confusion technique to 7 classes of tree species. The result had shown the overall accuracy classification was 64%.

Publisher

IOP Publishing

Subject

General Engineering

Reference14 articles.

1. The Effect of Deforestation on Tree Species in IGALAMELA Local Government Area of KOGI State, Nigeria;Abiola;Environmental Science, Toxicology and Food Technology,2016

2. Classification of Australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms;Shang;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3