Analysis of Methanation Path Based on Power-to-X Technology——Taking China as an Example

Author:

Zhao X L,Li Q F,Yang Y W,Song L F

Abstract

Abstract In order to accelerate the realization of the “Paris Agreement” global warming temperature control goals and to achieve carbon emission reduction and green sustainable energy development, countries around the world are actively exploring and developing new energy utilization technologies. This paper takes China as an example to study and analyze the methanation path based on Power-to-X technology. The results show that:①China’s potential for hydrogen production from renewable energy in the future, as well as the introduction of CO2 capture technology for thermal power plants and other sectors for carbon emission reduction and resource utilization, all have good potential, and both can provide sufficient raw materials for the methanation process;②Methanation production by providing green hydrogen and capturing and recovering carbon dioxide is in line with the goals and requirements of the new generation of energy systems for sustainable development. This technological path is actually helpful for delaying global warming and realizing the reduction and resource utilization of renewable energy curtailment in CO2. At the same time, in the future, relying on the synergy of technology and policy to continuously increase the scale of the system to reduce the overall cost, it is expected to achieve large-scale applications.

Publisher

IOP Publishing

Subject

General Engineering

Reference27 articles.

1. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review;Buttler;Renew Sustain Energy Rev.,2018

2. Review of power-to-gas projects in Europe;Wulf;Energy Procedia.,2018

3. IEA HIA - TASK 38: Power-to-Hydrogen and Hydrogen-to-X: System Analysis of the techno-economic, legal and regulatory conditions,2019

4. Report on deployment of infrastructure for alternative fuels in the European Union: time to act! Strasbourg: European Parliament;Ertug,2018

5. Electrofuels for the transport sector: A review of production costs;Brynolf;Renew Sustain Energy Rev.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3