A ML framework to predict permeability of highly porous media based on PSD

Author:

Yang Haoyu,Ke Yan,Zhang Duo

Abstract

Abstract Using machine learning (ML) method to predict permeability of porous media has shown great potential in recent years. A current problem is the lack of effective models to account for highly porous media with dilated pores. This study includes (1) generation of media (porosity = 0.8) via a Boolean process, (2) the pore size distribution (PSD) control by using different groups of homogeneous packed spherical particles (3) PSD data obtainment using the spherical contact distribution model (4) computation of the permeability via LBM simulations, (4) training of artificial neuron network (ANN) and (5) analysis of the model. It is found that the PSD could outperform the previous geometry descriptors as an input of ML framework to deal with highly porous structures with different fractions of dilated pores, however there is still room for precision enhancement.

Publisher

IOP Publishing

Subject

General Engineering

Reference30 articles.

1. High performance liquid chromatography method and apparatus;Quinn,1998

2. Pore Structure and permeability of hardened cement paste*;Hughes;Magazine of Concrete Research,1986

3. Relationship between pore structure and permeability of hardened cement mortars: On the choice of effective pore structure parameter;Bágel’;Cement and Concrete Research,1997

4. A Reconciliation of Packed Column Permeability Data: Column Permeability as a Function of Particle Porosity;Quinn;Journal of Materials,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3