Ultra-High Frequency Partial Discharge Signal Recognition in GIS based on Fisher Linear Discriminant Theory

Author:

Xudong Pei,Xubing Pei,Haiqi Xu

Abstract

Abstract In this paper, dual tree complex wavelet transform (DT-CWT) is used to decompose UHF partial discharge (PD) signal in multi-scale. The optimal decomposition level of complex wavelet is solved. The wavelet energy features of real part and imaginary part of UHF-PD signal under the optimal decomposition scale are extracted. Fisher linear discriminant method is used to select the features of energy features and to identify the PD types. The results show that the optimized real part and imaginary part high frequency wavelet energy features can effectively identify four kinds of typical insulation defects, and the recognition rate can reach to 92.5%. Meanwhile, the optimal complex wavelet energy (OCWEF) feature has better sensitivity and recognition effect in PD type identification.

Publisher

IOP Publishing

Subject

General Engineering

Reference10 articles.

1. Conditions of discharge-free operation of XLPE insulated power cable systems [J];Schaik;IEEE Transactions on Dielectrics and Electrical Insulation,2008

2. Application of statistic parameters in recognition of partial discharge in transformers[J];Wentang;High Voltage Engineering,2009

3. Application of signals separated band energy spectrum and mahalanobis clustering algorithm for switchgear partial discharge pattern recognition[J];Pan;High Voltage Engineering,2015

4. Feature Extraction for Partial Discharge Based on Cross-Wavelet Transform and Correlation Coefficient Matrix[J];Haikun;TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY,2014

5. Multi-scale feature parameters extraction of GIS partial discharge signal with harmonic wavelet packet transform[J];Ju;TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3