Obliquely incident seismic response of subway stations following urban soil internal erosion

Author:

Wei S M,Wang C,Liang F Y,Qin T X

Abstract

Abstract Urban groundwater infiltration resulting from tropical storm rainfall can lead to internal soil erosion and ground subsidence. The long-term effects of these phenomena may result in uneven settlement of the subway system, posing risks to its safety and operational integrity. Suffusion poses a significant hazard to long-term subway operation. It is a type of soil internal erosion characterized by the migration of fine particles from the pore channels between coarse particles. This study focused on the performance degradation of different gap-graded sands caused by internal erosion, observed through triaxial compression tests. Using the cap plasticity model and considering mechanical parameters before and after soil erosion, a refined two-dimensional finite element model of a soil subway station structure based on ABAQUS was developed to analyze the deformation and damage pattern of the subway structure resulting from soil internal erosion and earthquake. The results of this study demonstrated that localized internal soil erosion significantly contributes to uneven settlement in subway stations, potentially compromising their seismic performance during oblique seismic excitations.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3