Thermal behaviour of Paraffin-MWCNT stabilized by Sodium dodecylbenzene sulphonate nano-enhanced phase change material for energy storage applications

Author:

Bhutto Yasir Ali,Pandey A. K.,Saidur R.,Laghari Imtiaz Ali,Buddhi D.,Tyagi V.V.

Abstract

Abstract The Phase change materials (PCMs) possess the great potential to store renewable and sustainable thermal energy that can mitigate the issue of energy to a great extent. However, the low thermal conductivity hinders the extensive use of PCM in various applications. To alleviate this deficiency, the PCMs are often incorporated with highly conductive nanoparticles. The carbon-based nanoparticles are highly regarded to be a promising option because of their elevated thermal conductivity like Multiwall carbon-nanotube (MWCNT). However, these highly conductive nanoparticles sometimes exhibit the issue of non-uniform dispersion with PCM. In this paper, we report the use of surface-modified MWCNT by using stabilized Sodium dodecylbenzene sulphonate surfactant (SDBS) with Paraffin wax (PW) RT47 at wt% 0.1 and 0.3 of MWCNT. The sample is created by using two-step method. Further, for characterization; chemical composition by Fourier transform infrared spectroscopy (FTIR), thermal conductivity by thermal property analyzer (TEMPOs) and for thermal stability, thermal gravimetric analyzer (TGA) is used. The results showed a significant enhancement in the thermal conductivity of composite PCM, the inclusion of 0.1 and 0.3 wt% of surface-modified MWCNT increased the thermal conductivity up to 51.29% and 76.5% respectively. The FT-IR confirms that the components are physically mixed in NePCM composite, no chemical reaction appeared as no displacement of characteristic peaks or a new peaks appeared. TGA results showed the prepared nano-enhanced phase change material (NePCM) is stable. Thus, surface modification of MWCNT by using SDBS for PW can be the effective method to boost the overall performance of NePCM without losing its basic characteristics. Therefore, based on results, it can be concluded that the surface modified Paraffin/MWCNT NePCM is well suited for applications like energy storage, photovoltaic thermal system, and battery thermal management. PCM showed enhanced thermo-physical properties. Therefore, it might be the candidate for energy storage and other thermal practical applications in future.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3