Shale fault reactivation during hydraulic fracturing in the Sichuan Basin: Evidence from shear experiments and stress perturbation calculations

Author:

An Mengke,Zhang Fengshou,Yin Zhenyu,Elsworth Derek

Abstract

Abstract Induced seismicity triggered during hydraulic fracturing for shale gas exploitation in the Sichuan Basin has aroused wide public concern with these earthquakes closely correlated with the reactivation of faults within the reservoir. The target shale reservoirs in the Sichuan Bain are currently located in the Longmaxi formation. To explore instability on these faults, we conducted shear experiments on simulated fault gouges under hydrothermal conditions to assess frictional stability and also evaluated the stress perturbations resulting from multistage hydraulic fracturing. Experimental results show that the frictional instability on these faults is primarily controlled by both mineral composition and the applied temperatures. With a decrease in the contents of phyllosilicate minerals or an increase in applied temperatures, the shale faults exhibit a transition from velocity-strengthening to velocity-weakening behaviour, indicating the potential for unstable fault slip. The stress perturbations resulting from multistage hydraulic fracturing were calculated from a dislocation model of the fluid-driven fracture. These results show that the stress changes resulting from multistage hydraulic fracturing are sufficient to reactivate adjacent unstable faults in the shale reservoir and trigger the seismicity. Our experimental and modelling results highlight the importance of shale composition, temperature, and stress perturbations on shale fault stability. These results have significant implications for understanding the shale fault instability and the potential triggering of induced seismicity during hydraulic fracturing in the Sichuan Basin.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3