Comparison of resistance of soybean nodule bacteria strains to pesticide and osmotic stresses

Author:

Laktionov Yu V,Kosulnikov Yu V,Kozhemyakov A P

Abstract

Abstract The increasing areas under leguminous crops and the general increase in the intensification of production force agricultural producers to combine seed inoculation and dressing in one step, carrying it out a few days before sowing. In this regard, it is of practical interest to study the resistance of rhizobia strains of inoculants to osmotic and chemical stresses, i.e. the nature of the dynamics of their viability on seeds and in contact with pesticides. The stability of two strains of soybean nodule bacteria (B. japonicum 634 and B. japonicum H9) to osmotic and chemical stresses (fungicidal mordants) was studied. According to the results of the study, pesticidal protectants had different toxicity degrees for the studied strains, which allowed them to be arranged in order of increasing toxicity for rhizobia: Baisad, VSK; Tirada, SK; Oplot, VSK). Soybean rhizobium strain B. japonicum H9 is defined as more osmotically and chemically stable, i.e., more adapted to modern agricultural technologies of soybean cultivation, which ensures the presence of at least 2·104CFU per 1 seed 9 days after inoculation, while the number of viable cells of strain B. japonicum 634b per 1 seed drops to 0 within 3 days after inoculation. Osmotic resistance of the strain allows for effective inoculation of seeds at least 9 days before sowing, and chemical resistance allows for effective combination of an inoculant based on this strain and all the pesticide protectants studied in this work into one working solution.

Publisher

IOP Publishing

Subject

General Engineering

Reference19 articles.

1. On factors affecting the toxicity of seed protectants for symbiotic nitrogen fixers in the composition of biological products;Kosulnikov;Agricultural Biology,2018

2. The effect of water-soluble polymers on the survival of lupin nodule bacteria (RHIZOBIUM LUPINI);Laktionov;Grain farming in Russia,2018

3. Isolation and Characterization of Pesticide Tolerant Bacteria from Brinjal Rhizosphere;Alam;Int.J.Curr.Microbiol.App.Sci. Special Issue,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3