Evaluating the Impact of the Recent Combined and Satellite-Only Global Geopotential Model on the Gravimetric Geoid Model

Author:

Azmin Nurul Shafiqah Hazelin Noor,Pa’suya Muhammad Faiz,Din Ami Hassan Md,Aziz Mohamad Azril Che,Othman Noorhurul Ain

Abstract

Abstract Geoid represents Earth’s surface, ocean, and gravitational field, which influence the elevations, shape, and mass distribution of the geopotential surface, a hypothetical surface that is perpendicular to the direction of gravity at every point. This geopotential surface serves as a reference for measuring elevations and is used as a fundamental reference surface for geodetic and surveying purposes. In this study, the Least Squares Modification of Stokes Formula (LSMS) with Additive Corrections (AC), also known as the KTH method, is used to generate a new gravimetric geoid model for Peninsular Malaysia. The KTH method was developed at the Royal Institute of Technology (KTH) in Stockholm-Sweden. The dataset used is the most recent global digital elevation model, Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global, generated by the National Aeronautics and Space Administration (NASA) and the National Imagery and Mapping Agency (NIMA). In addition to this elevation data, the dataset includes the Global Geopotential Model (GGM), which is composed of the XGM2016, XGM2019e, Tongji_GGMG2021S, and Tongji-Grace02k models. Furthermore, it incorporates sets of regional gravity data, including terrestrial gravity, airborne gravity, and marine gravity anomalies, all of which are derived from the Technical University of Denmark (DTU 21). The actual 45 Global Navigation Satellite System (GNSS)-levelling points data have been compared to the gravimetric geoid model developed in this study and the geoid acquired from Department of Survey and Mapping Malaysia (DSMM). According to the statistical results, NXGM2019e provides better accuracy, with the Root Mean Square Error (RMSE) geoid model errors of ±0.033 m, compared to the deviations in free-air anomalies, XGM2019e, which has the minimum RMSE of 10.291 mGal. Meanwhile, Tongji-GMMG2021S has the maximum RMSE of 14.792 mGal. The geoid is derived from the XGM2019e model and has maximum and minimum values of 0.032 m and 0.147 m, respectively, with mean residuals of 0.089 m. In conclusion, the XGM2019e has the potential to determine a precise local geoid model for Peninsular Malaysia

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3