Hydroacoustic interaction between draft tube and penstock eigenmodes under Francis turbine full load instability

Author:

Alligné S.,Nicolet C.,Vaillant Y.,Lowys P-Y.,Heraud J.,Lecomte B.

Abstract

Abstract At high load, Francis Turbines may experience self-sustained pressure surge leading to significant power swing and pressure fluctuations along the waterway. The physical mechanism initiating this instability phenomenon has been the subject of much research. The development of the axisymmetric cavitating vortex rope at the runner outlet modifies the hydroacoustic properties of the draft tube waterway. Very low wave speed due to high cavitation volume combined with a high swirling number initiates the unstable axial pulsations of the cavitating vortex rope which frequency corresponds to a penstock’s eigenfrequency. The 15 MW power plant of Monceaux-la-Virole in France, composed of two units fed by a single penstock, experiences such full-load surge. On-site tests have been carried out to analyze the envelope of pressure fluctuations along the penstock once instability occurs. Combined with a 1D SIMSEN model of the power plant, these measurements have allowed to enhance the understanding of this instability phenomenon. To achieve this, an advanced draft tube modelling taking into account distributed wave speed, convective terms and divergent geometry is used and frequency analysis is carried out. Unstable draft tube eigenmodes and stable penstock eigenmodes are predicted. The key draft tube model parameters such as wave speed and second viscosity are calibrated to set the draft tube eigenmode frequency to the unstable measured frequency for different operating points. This frequency analysis concludes that high load instability occurs when a matching between the draft tube and the penstock eigenfrequencies is experienced. Moreover, it is shown that the unstable draft tube eigenmode is able to interact with different order penstock eigenmodes as function of the operating point of the unit.

Publisher

IOP Publishing

Subject

General Engineering

Reference18 articles.

1. Surging of 140 MW Francis turbines at high load, analysis and solution;Jacob,1992

2. Overload surge event in a pumped storage power plant;Koutnik,2006

3. High load behavior of a Francis turbine model and scale effects;Prénat,1986

4. Empirical findings on the transmission of draft tube instabilities along the penstocks of hydraulic plants;Héraud,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3