Predicting Sediment transport in sewers using integrative harmony search-ANN model and factor analysis

Author:

Zounemat-Kermani Mohammad,Fadaee Marzieh,Adarsh S,Hinkelmann Reinhard

Abstract

Abstract This study evaluates the performance of an integrated version of artificial neural network namely HS-ANN (which is a combination of neural network and heuristic harmony search algorithm) as an alternative approach to predict the sediment transport in terms of sediment volumetric concentration (Cv) in sewer pipe systems. To overcome the complexities of choosing the optimum number of the input variables and to consider the effective parameters of the model, the factor analysis technique is utilized. In addition to the HS-ANN model, an empirical equation, as well as a multiple linear regression model, are also considered. The mean square error (RMSE), mean absolute percentage error (MAPE), and Pearson correlation coefficients (PCC) are used for evaluating the accuracy of the applied models. As the comparisons demonstrate, the HS-ANN model (PCC = 0.97) is more accurate than the existing empirical equation and MLR model and could be successfully employed in predicting sediment transport in sewer networks.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3