Evaluation of efficiencies of biological propylene oxidation in the presence of metals

Author:

Avdeeva L V,Golovanova S A

Abstract

Abstract The effect of metal ions (iron, nickel, zinc) in concentration range (1÷60)×10−5 M on biological propylene oxidation by bacteria Methylococcus capsulatus (M) was evaluated. The influence of metal varied from activation to inhibition. It was found that at low concentrations (up to (1÷10) ×10−5 M) iron ions stimulate the biological propylene oxidation, while nickel and zinc ions have no that effect. When the metal concentration increases to 60×10−5 M, it leads to inhibition of propylene oxidation by both nickel and zinc ions, but the inhibition by iron was not observed. The minimum inhibitory concentrations for the studied metals were determined.

Publisher

IOP Publishing

Subject

General Engineering

Reference15 articles.

1. The natural way to tackle greenhouse effect;Aimen;Journal of Bioremediation and Biodegradation,2018

2. Evaluation of sodium chloride, lead nitrate, cadmium nitrate and fertilizers «geoprodin» the synthesis of chlorophyll in the leaves of wheat (Triticum Aestivum L.);Allahverdiev;Chemical sciences,2015

3. Heavy metals in food crops: Health risks, fate, mechanisms, and management;Rai;Environment International,2019

4. Enhanced adsorptive bioremediation of heavy metals (Cd2+, Cr6+, Pb2+) by methane-oxidizing epipelon;Faheem;Microorganisms,2020

5. Multifunctional periphytic biofilms: polyethylene degradation and Cd2+ and Pb2+ Bioremediation under high methane scenario;Faheem;International Journal of Molecular Sciences,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3