Comparison of the missing rainfall data method in enhancing discharge estimation

Author:

Mahyun A W,Mohd Azrul Ismail M,Salwa M Z M,Isa Nurfitriah,Azlinda A G,Fauzi M R

Abstract

Abstract Missing rainfall data can cause the results of an analysis to be inaccurate. This study aims to compare the performance of different methods in estimating missing rainfall data and to evaluate the estimated missing rainfall data method on hydrograph estimation. The methods used to estimate missing rainfall data in three selected stations include the arithmetic mean (AM) method, the inverse squared distance (ISD) method, and replacing missing value with zero value (ZERO). The study employs root mean square error (RMSE) to assess the accuracy and reliability of the methods. The estimated rainfall data are then utilized in Stormwater Management Modelling Software 5 (SWMM5) to evaluate the data impact on the discharge estimation. The results indicated that the AM method is the best method to estimate missing rainfall data by considering the lowest RMSE value equal to 1.185. In conclusion, the comparison of missing rainfall data methods in this study has shed light on their performance in enhancing discharge estimation.

Publisher

IOP Publishing

Reference13 articles.

1. A comparison of method for treating missing daily rainfall data in Peninsular Malaysia Malays;Kamaruzaman,2017

2. A Comparison of Methods of Estimating Missing Daily Rainfall Data;Azman;Eng. IOP Conf. Ser. Mater. Sci. Eng.,2021

3. Revised Spatial Weighting Methods for Estimation of Missing Rainfall Data Asia-Pac;Deni;J. Atmospheric Sci.,2008

4. A Comparative Study of Missing Rainfall Data Analysis Using The Methods of Inversed Square Distance and Arithmetic Mean;Yogafanny;ASEAN Eng. J.,2022

5. Estimation of rainfall and stream flow missing data for Terengganu, Malaysia by using interpolation technique methods Malays;Wan Zin @ Wan Ibrahim W Z;J. Fundam. Appi. Sci.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3