Investigating on Combining System Dynamics and Machine Learning for Predicting Safety Performance in Construction Projects

Author:

Muntasir Nishat Mirza,Renolen Borkenhagen Ingrid,Sveen Olsen Jenni,Rauzy Antoine

Abstract

Abstract This study focuses on an investigative approach to combine system dynamics and machine learning algorithms to develop an early warning system for the safety management of construction projects. As the construction industry is highly accident-prone, developing a decision-support system has always been a challenge for the research community. Therefore, 53 indicators that influence each other and the construction phase were included in the planning phase of the model. The system dynamics model was validated using extreme state and sensitivity tests, which showed reasonable trends in the number of accidents. For each simulated project, all indicator data was stored in one dataset, using two different accident rates: one for serious and one for fatal accidents. Consequently, two separate datasets were generated, one for serious accidents, which was balanced, and one for fatal accidents. Machine learning was applied to both datasets to predict safety performance. The datasets were pre-processed so that the features consisted only of data from the planning phase, with the target feature being occurrence of accident. The study revealed two key findings. First, the study showed the possibility of combining system dynamics and machine learning for safety predictions in cases where real project data is not available. Secondly, the results showed that it is possible to carry out projects with a higher risk of major accidents and provide an early warning of poor safety performance. The data set with serious accidents resulted in lower accuracy but higher recall values. However, the models struggled to identify fatal accidents as the values for the fatal accident dataset were too low. Therefore, it was discussed how other safety measurements could be more appropriate. Thus, the combination of system dynamics and machine learning has the potential to serve as a decision-support tool in construction projects and to disseminate knowledge about safety performance.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3