Organic vegetable farming system enhancing soil carbon sequestration in Bali, Indonesia

Author:

Sardiana I K

Abstract

Abstract Climate change as an implication of global warming due to the influence of increasing concentrations of greenhouse gases in the atmosphere has become an important issue in recent decades. Organic farming plays an important role in mitigating climate change by reducing atmospheric greenhouse gas emissions through increased soil carbon sequestration. This study was designed to compare soil carbon sequestration levels between conventional and organic vegetable farming fields in Bali, Indonesia. Soil samples were taken from organic fields and conventional fields in pairs. Variables of soil organic carbon, soil labile carbon, and soil bulk density are measured. Vegetable yields were estimated by fresh weights from a quadrant of 45 plants (1.12 m2) in each farming system, which is then converted to the fresh weight per hectare. The results from soil analysis indicate that organic farming leads to soil with significantly higher soil carbon storage capacity than conventional farming. The labile C fraction shows a more significant increase compared to total C. Organic farming can increase by 1.13 tons C per hectare per year compared with the conventional farming system. The use of manure compost as an alternative in vegetable fields of Bali has resulted in increased soil organic carbon storage and gross benefits for farming. Although more research is needed on the actual emissions of CO2 gas from organic and conventional farming, this research can be used as an early indication that organic vegetable farming system can increase the mitigation of global warming, and build sustainable agriculture in Bali, Indonesia.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3