Development and evaluation of a novel high-density weighted fracturing fluid in ultra-deep reservoirs

Author:

Xu Hang,Zhou Fujian,Li Yuan,Chen Zhishuo,Yao Erdong

Abstract

Abstract Ultra-deep reservoirs make the fracturing operations facing some inevitable problems, especially the higher surface treating pressure, which usually exceeds the limitation of existing fracturing equipment. Weighted fracturing fluid has become one of the most effective methods to deal with this challenge. In this study, a novel high-density weighted fracturing fluid was developed with self-synthesized new weighting agent and crosslinker through extensive laboratory experiments. The density of the new weighted fracturing fluid was up to 1.46 g/cm3. The crosslinking time can be controlled within 3.1∼10.2 mins, which helps in limiting the tubing friction. Performance evaluation results show that the fluid system has desired high temperature-stability and shearing resistance. Under 150 °C, 170 s–1, the final apparent viscosity still remains above 50 mPa·s after shearing for 60 mins. The maximum friction reduction rate of the based fluid reached 68.4 %, which is speculated lower than the wellsite application. The newly proposed weighted fracturing fluid is a good choice for ultra-deep and high-temperature reservoirs stimulation and hence improving the recovery.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3