Exergy assessment of a semi-transparent building integrated photovoltaic facade for mild weather conditions of Srinagar

Author:

Hazarika P,Shyam ,Gaur A

Abstract

Abstract Effective utilization of solar energy reduces the dependence on fossil fuel usage along with achieving the objective of carbon neutrality. The current work aims to numerically assess the performance of a facade based semi-transparent BIPVT system while considering four different weather conditions in a month for the climate of Srinagar, India. In the proposed configuration, the BiSPVT facade serves the dual purpose of generating electrical power gain and providing pre-heated air for space heating. PV module surface was cooled by flowing air through the air channel. Movement of air through the cavity takes away the heat from the PV module back surface reducing the temperature of the solar cells resulting in enhanced module efficiency. System performance has been evaluated in terms of obtained energy and exergy using a 1-D numerical model developed in MATLAB. The Exergy analysis presented shows an informative means of estimating system functioning based on qualitative aspect of useful energy gained. For a mild cold weather condition of Srinagar, with minimum ambient temperature dropping to 1.2 °C, useful daily exergy gain of 0.0545 kWh/m2 has been achieved signifying the increase of space heating during winters of cold climatic regions. Maximum temperature difference between room and ambient was obtained as 9.76 °C using the BiSPVT façade. Results shows that the proposed BiSPVT system was able to produce monthly electrical and thermal exergy gain of 12.56 kWh/m2 and 16.81 kWh/m2 respectively. Exergy efficiency of the system was determined in the range of 18.2%-19%. Further, environmental assessment of the PV façade system based on CO2 emission gave an estimated amount of 0.387-ton CO2 emission reduction for the month of November leading to environmental cost reduction of 5.615$/month.

Publisher

IOP Publishing

Reference12 articles.

1. Energy and exergy efficiencies of a hybrid photovoltaic thermal (PV/T) air collector;Joshi;Renewable Energy.,2007

2. Review of R & D progress and practical application of the solar photovoltaic / thermal (PV/T) technologies;Zhang;Renew Sustain Energy Rev.,2012

3. Evaluation of cooling potential of passive strategies using bioclimatic approach for different Indian climatic zones;Bhamare;J Build Eng.,2020

4. Exergy analysis of a naturally ventilated Building Integrated Photovoltaic / Thermal (BIPV / T) system;Agathokleous;Renew Energy.,2018

5. Exergy analysis of solar energy applications;Saidur;Renew Sustain Energy Rev.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3