A comprehensive bibliometric review and analysis on the evolution of nanotube-based hydrogen storage materials via DFT simulations

Author:

Villagracia A R C

Abstract

Abstract Hydrogen’s promise as a clean energy carrier is tempered by the challenges of efficient storage and safety concerns. While it offers an alternative to finite fossil fuel resources, current hydrogen storage methods, like cryo-compression and liquefaction, are often economically impractical. To tackle these issues, researchers are turning to nanotube materials (NTMs), crystalline substances with unique attributes ideal for hydrogen storage. Structural adaptability - NTMs can be precisely engineered for optimized hydrogen adsorption. These materials boast significant porosity, providing ample room for hydrogen molecules. NTMs offer a large surface area, enhancing their hydrogen adsorption capacity. NTMs employ weak van der Waals forces for hydrogen adsorption, enabling easy release via heat or pressure. Efforts are underway to enhance NTMs’ surface area and hydrogen uptake capabilities, along with a focus on mechanisms like the hydrogen spill-over for achieving high-density storage. NTMs go beyond storage; they can act as proton exchange membranes and fuel cell electrodes, making them versatile components in hydrogen-based energy systems. One strategy for improving NTM hydrogen storage involves introducing dopants or defects. Transition metals, due to their ability to attract and store hydrogen molecules in NTMs, are commonly explored. However, this addition may reduce the material’s gravimetric density, a critical practical consideration. In summary, research into NTMs and their potential for hydrogen storage via density functional theory is ongoing. This work explores strategies to enhance hydrogen storage, especially through transition metal doped NTMs. While these metals can improve hydrogen adsorption, the trade- offs in gravimetric density must be carefully weighed. Overall, this research contributes to the broader goal of harnessing hydrogen’s potential as a clean energy carrier, addressing the world’s growing energy needs.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3