Seawater source heat pump system based on capillary heat exchanger for seepage in submarine tunnel: a case study

Author:

Zhang F J,Zhang L,Li C,Gao S J

Abstract

Abstract The discharge of seepage water from undersea tunnel structures, often treated as wastewater, inherently carries a substantial reservoir of untapped low-grade thermal energy. Unfortunately, comprehensive investigations into harnessing this latent potential remain notably limited. This study introduced an innovative strategy through the design of an undersea tunnel seepage seawater source heat pump system. Distinguished by the integration of a capillary front-end heat exchanger, this system aimed to effectively exploit the frequently disregarded low-grade thermal energy present in the seepage water of undersea tunnel structures. The seawater seepage from the tunnel is transported to the car park at the tunnel entrance, and a seawater energy pool is constructed by storing seawater in its underground space. The use of capillary network placed in the energy pool in the front heat exchanger, water source heat pump units, circulating water pumps and fan coil end device composed of underground undersea tunnel seepage seawater source heat pump system for the building heating and cooling. Furthermore, a comparative assessment was conducted, contrasting this novel system with the traditional air-conditioning setup that utilizes chillers and gas boilers as cooling and heating sources. The aim was to evaluate its capacity for energy conservation and emission reduction. The findings from the study strongly affirmed the viability of the proposed seepage seawater source heat pump system within undersea tunnels. It boasted the potential to achieve annual savings of 53.55 tce, highlighting a noteworthy energy-saving rate of 21.2%. Concurrently, reductions in CO2, SO2, and particulate emissions amounted to 132.28 t/a, 1.07 t/a, and 0.54 t/a, respectively. This study not only stands as a reference for the strategic utilization of seepage seawater from undersea tunnel structures, prioritizing energy conservation and emission reduction, but also pioneers innovative approaches toward resource optimization and environmental sustainability, meeting the inherent needs of carbon peaking and carbon neutrality goals.

Publisher

IOP Publishing

Reference14 articles.

1. Thermal environment and thermal comfort in metro systems: A case study in severe cold region of China;Wang;Build. Environ.,2023

2. Recent progress in research on PM2.5 in subways;Chang;Environ. Sci-Proc Imp.,2021

3. An Investigation on Energy Consumption of Air Conditioning System in Beijing Subway Stations;Pan;Proceedings of the 9th International Conference on Applied Energy,2017

4. Design and experimental study of a novel air conditioning system using evaporative condenser at a subway station in Beijing, China;Pan;Sustain. Cities Soc.,2018

5. A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources;Wang;Renew. Energ.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3