Assessing the Effect of Aluminium Oxide Nanoparticle Additives on Biodiesel Combustion in Marine Diesel Engines

Author:

Mohd Noor Che Wan,Ismail Amir Azfar,Fhatihah Amirah Nur,Ahmad Mohammad Fadhli,Khasbi Jarkoni Mohammad Nor,Briggs Horizon Gitano

Abstract

Abstract The increases in annual ship exhaust emissions have prompted the shift towards adopting alternative energy sources. Biodiesel is a suitable substitute fuel for marine engines that does not necessitate engine alterations. Biodiesel is renewable, environmentally friendly, and plant-based with biodegradable properties. The fuel is also non-toxic and oxygenated and shares similar characteristics with diesel fuel. Nonetheless, biodiesel fuel exhibits slightly reduced performance compared to diesel primarily due to its lower energy content. This study aims to evaluate the combustion attributes of a marine diesel engine employing palm biodiesel fuel incorporated with aluminium oxide (Al2O3) nanoparticle additives. A B20 biodiesel fuel was blended with 50, 100, and 150 ppm Al2O3 nano additives. The engine combustion parameters, in-cylinder pressure, heat release rate (HRR), mass fraction burned, and ignition delay were analysed and compared to the B20 fuel without additives. Adding Al2O3 nano additives to the B20 biodiesel blend improved the engine combustion characteristics. The optimal performance was recorded by the blend incorporating 150 ppm nanoparticles. The in-cylinder pressure and HRR peaks also improved by 5.41 to 15.1% and 4.69 to 16.9%, respectively, compared to the other B20 fuel blends. Furthermore, the B20 mixed with Al2O3 documented a more rapid mass fraction burned rate, resulting in a shorter ignition delay of approximately 5 CA°. In addition, the amount of oxygen in biodiesel blended with Al2O3 nano additives has improved engine combustion compared to B20 fuel. The present study demonstrated that adding Al2O3 nano additives to palm biodiesel fuel significantly enhanced engine combustion attributes, thus highlighting its potential to reduce reliance on petroleum-based fuels and provide sustainable fuel alternatives for marine diesel engines.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3