A visualization study of a confined vapor chamber with conical microstructure applied in data centres

Author:

Liu Yijia,Qin Siyu,Yang Changming,Meng Xiangzhao,Yang Chun,Jin Liwen

Abstract

Abstract With the development of the informatization technology, the scale of the data centre is expanding rapidly. The energy consumptions of the electronic equipment in the data centre are rising regularly, which lead to the thermal management becoming an argent issue to be settled. To realize the sustainable development of green data centre, the passive two-phase vapor chamber (VC) has turned into the focus of electronic cooling research. Constructing nucleation induced structures on the evaporation surface is an effective method to improve the performance of the vapor chamber. To address the problem of achieving enhanced boiling, a novel conical microstructure was designed in the vapor chamber with 50 mm height. The conical structure of 1 mm axial height was fabricated on the evaporation surface by computer numerical control (CNC) machining technology. A visualization experimental system was developed to investigate the effect of the conical microstructure on the two-phase behaviours, and the boiling heat transfer characteristics under different heating conditions (Q in = 35 W, 50 W, 65 W) in a confined vapor chamber. The high-speed camera was used to capture the bubble behaviours. Experimental results found that compared with the smooth surface, the integration of the conical structure increasing the number of bubble nucleation sites and the bubble departure frequency. The bubble growth period at stable heating stage is 162 ms shorter than initial heating stage on the evaporation surface with conical structure. The thermal resistance (R vc) of vapor chamber with conical structure is improved by 5.85% compared to the smooth one at Q in = 65 W, which indicate that the conical microstructure can enhance the boiling heat transfer performance. This study aims to provide a reference for the design of thermal management system for green data centre.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3