Production of biodiesel from non-edible waste palm oil and sterculia foetida using microwave irradiation

Author:

Milano J,Tiong S K,Chia S R,Ong M Y,Sebayang A H,Kalam M A

Abstract

Abstract The environmental damage stemming from traditional diesel begins during crude oil extraction and persists throughout its usage. The burning of fossil fuels has further deteriorate the environmental effect and added to global warming by emitting harmful substances. Moreover, the reduction of finite fossil fuel reserves due to widespread extraction has made the adoption of renewable resources essential. Given these considerations, biodiesel emerges as a highly promising alternative to conventional diesel due to its environmentally beneficial nature, renewable source, and economic feasibility. In this study, biodiesel was prepared by a microwave reactor in the presence of potassium methoxide using blended waste palm oil and sterculia foetida. The effects of raw materials characteristics on transesterification products were studied. The studied process parameters were methanol/oil ratio, microwave temperature, catalyst concentration, reaction time, and stirring speed. The optimal yield with 98.5% FAME content was obtained at a methanol/oil ratio of 60 vol. %, microwave temperature of 120 °C, catalyst concentration of 0.3 wt.%, and 3 min reaction time, and stirring speed of 500 rpm. The potassium methoxide was used to catalyse the transesterification process. The physicochemical properties and the fatty acid methyl ester composition were discussed thoroughly. The flash point of biodiesel, at 157.5°C, exceeds that of diesel fuel by more than two times. The cetane index is 59.5 which is higher than diesel (49.6). The biodiesel’s fuel properties conformed to the requirements of both ASTM D6751 and EN 14214. High biodiesel conversion and low sulphur content show that waste palm oil and sterculia foetida are sustainable and economical feedstocks that produce clean fuel to aid the feasibility of the energy transition of the global energy sector. In addition, the selection of synthesis approaches can be further explored for potential catalysts to ensure eco-green biodiesel’s sustainability with minimised.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3