Experimental soil matrix, vortex and oil skimming technology as a tertiary treatment of wastewater effluent

Author:

Tugade C.,Pescos C.J.,Caliwag C.A.L.,Centeno C.D.V.,Tan J.D.C.,Malveda Q.M.D,Olivares R.C.,Chavez R.M.,Carrillo L.

Abstract

Abstract Water is a necessary resource that must be carefully managed. Hazardous chemicals are produced with increased industrial activities and contamination has been detrimental to both people and the environment. An experimental investigation was performed to evaluate the efficiency of vortex technology, soil matrices, and oil skimmer separately for combination as a tertiary wastewater treatment in the design of a phytoremediation system. The objective of the study is to evaluate the performance of each component in removing oil and grease, reducing the concentration of ammonia, nitrate, and phosphate; quality control measures for dissolved oxygen, total dissolved solids, and chemical oxygen demand. One-way ANOVA, kinetics analysis, and adoption isotherm analysis were applied to determine the significance of the parameters. Analysis of results for the oil skimmer exhibited an efficiency of 96% in removing oil and grease after 5 hours of treatment. The vortex technology results were fluctuating with percentage removal of nitrates at 11% while ammonia with an initial concentration of 5.24 mg/L was reduced to 4.12 mg/L. Phosphate decreased after treatment from an initial of 0.87 mg/L to 0.809 mg/L. The analysis of pollutant concentration in the soil matrix after a 5-day period indicated a greater efficiency compared to the vortex technology in the removal of ammonia and phosphate. The ammonia concentration decreased from 18.7 mg/L and 21.4 mg/L to <0.1 mg/L. Similarly, phosphate concentration decreased from 15.5 mg/L to 1.13 mg/L and from 32.5 mg/L to 0.948 mg/L. The research finding underscores the efficiency of the soil matrix in removing ammonia and phosphate but recommends the need for additional intervention to lower nitrate. Overall, the three technologies showed potential and greater efficiencies in mitigating wastewater streams resulting in a notable reduction in oil and pollutant concentrations.

Publisher

IOP Publishing

Reference10 articles.

1. Population and access to clean water in Semarang City;Alihar;Jurnal Kependudukan Indonesia,2018

2. Simultaneous removal of nitrate and phosphate from wastewater using solid waste from the factory;Berkessa;Applied Water Science,2019

3. Quality Assessment of Potable Water Supply System in Petroleum Training Institute Community, Effurun, Nigeria;Birma;IOSR Journal of Environmental Science, Toxicology and Food Technology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3