Analysis of gauze pad made from coconut tree fiber infused with guava derived phenolic compounds

Author:

Suarez R,Peñamante E,Carrillo L,Delfin R,Gotostos T M,Patingan J,Provido A V,Ramos C M,Tugade C

Abstract

Abstract Gauze pad wound dressing plays a crucial role in protecting the wound and preventing it from factors that can prolong the healing process. However, due to the porous nature of gauze pads, it cannot completely block microbes from getting into the wound. This study analyzes coconut tree fiber as a gauze pad infused with guava derived phenolic compounds, known for its antimicrobial and antioxidant properties. The research assesses the extract’s effectiveness, focusing on phenolic compounds, antioxidant properties, and antimicrobial effects. By employing the disk diffusion method against Staphylococcus aureus, the study reveals that both 50% and 30% extracts exhibit inhibitory activity, with mean zones of inhibition at 8.5 mm and 8.33 mm, respectively, showing the antimicrobial property for both 50% and 30% extracts. The samples also demonstrated notable DPPH radical scavenging capacities for concentrations ranging from 0.006 to 1.27 (%w/v) for the 50% extract sample and from 0.006 to 1.25 for the 30% extract sample, ranging from 1.98% to 68.5% and 7.94% to 69.5%, respectively, indicating antioxidant property for both samples. The researchers have determined that there is no significant difference (p-value = 0.9187, α = 0.05) between the scavenging activity of both 50% and 30% extract. Furthermore, a minimal disparity in total phenolics was observed, with the former containing 1.25 and the latter 1.24 weight percent gallic acid. To determine if there is any negative skin reaction, a patch test was conducted in collaboration with a dermatologist using Stanford Health Care Medicine Standard. The test revealed no adverse skin reactions after three days of no removal usage of the coconut tree fiber gauze pad infused with phenolic compounds, as compared to a commercially available gauze pad. This study underscores the promise of guava extract and its antibacterial properties, particularly against skin pathogens, and its safe application when integrated with coconut fiber. This combination holds potential as a natural antimicrobial agent with diverse applications.

Publisher

IOP Publishing

Reference10 articles.

1. Strength properties of coconut fibre reinforced concrete;Ranjitham;AIP Conference Proceedings,2019

2. Natural cellulose fibers for surgical suture applications;Guambo;Polymers,2020

3. Antioxidant capacity and antimicrobial activity of commercial samples of guava leaves (Psidium guajava);Melo;Journal of Medicinally Active Plants,2020

4. Wound healing, antioxidant and antibacterial activities of polyphenols of Psidium guajava L. leaves;Bilal;South African Journal of Botany,2023

5. Phytochemical constituent and antimicrobial properties of guava extracts of east Hararghe of Oromia, Ethiopia;Ejigu;Clinical Phytoscience,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3