An Effective Sharpsat Solution Method Based on Learnt Clause Minimization Approach

Author:

Chen Xi,Du Weikang,Xu Yingjie,Ma Mingdian

Abstract

Abstract The problem of satisfiability of the propositional logic formula (SAT problem) in computer science is an important and difficult problem. Learning clauses often contain redundant literal in CDCL SAT solving, which may have a negative impact on the performance of the solver. To overcome this shortcoming, we show a new sharpSAT solver based on learning clause minimization is proposed. By recoding the CNF formula to reduce the storage space, and applying Boolean constraint propagation to eliminate redundant literals in the learning clause, the algorithm reduces the time cost. The complexity is compared with the existing solver. The experimental results show that the solver has significant application value, reduces the time of instance solution, and increases the number of maximum solvable instances.

Publisher

IOP Publishing

Subject

General Engineering

Reference21 articles.

1. A machine program for theorem-proving [J];Davis;Communications of the ACM,1962

2. Using CSP look-back techniques to solve real-world T instances [C];Roberto,1997

3. GRASP: a search algorithm for propositional satisfiability [J];Marques-Silva;Computers IEEE Transactions on,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3